Part Number Hot Search : 
71500 DS1922E M85049 L6207 10700419 NTRPB C100B CD4039A
Product Description
Full Text Search
 

To Download IRG4IBC30FD Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  parameter max. units v ces collector-to-emitter voltage 600 v i c @ t c = 25c continuous collector current 20.3 i c @ t c = 100c continuous collector current 11 i cm pulsed collector current ? 120 a i lm clamped inductive load current ? 120 i f @ t c = 100c diode continuous forward current 8.5 i fm diode maximum forward current 120 visol rms isolation voltage, terminal to case ? 2500 v v ge gate-to-emitter voltage 20 p d @ t c = 25c maximum power dissipation 45 p d @ t c = 100c maximum power dissipation 18 t j operating junction and -55 to +150 t stg storage temperature range c soldering temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) mounting torque, 6-32 or m3 screw. 10 lbf?in (1.1 n?m) IRG4IBC30FD insulated gate bipolar transistor with ultrafast soft recovery diode e g n-channel c v ces = 600v v ce(on) typ. = 1.59v @v ge = 15v, i c = 17a fast copack igbt 3/26/99 absolute maximum ratings pd- 91751a w parameter typ. max. units r q jc junction-to-case - igbt CCC 2.8 r q jc junction-to-case - diode CCC 4.1 c/w r q ja junction-to-ambient, typical socket mount CCC 65 wt weight 2.0 (0.07) CCC g (oz) thermal resistance www.irf.com 1 to-220 fullpak features features features features features ? very low 1.59v votage drop ? 2.5kv, 60s insulation voltage ? ? 4.8 mm creapage distance to heatsink ? fast: optimized for medium operating frequencies ( 1-5 khz in hard switching, >20 khz in resonant mode). ? igbt co-packaged with hexfred tm ultrafast, ultrasoft recovery antiparallel diodes ? tighter parameter distribution ? industry standard isolated to-220 fullpak tm outline benefits ? simplified assembly ? highest efficiency and power density ? hexfred tm antiparallel diode minimizes switching losses and emi
IRG4IBC30FD 2 www.irf.com parameter min. typ. max. u nits conditions q g total gate charge (turn-on) CCC 51 77 i c = 17a qge gate - emitter charge (turn-on) CCC 7.9 12 nc v cc = 400v see fig. 8 q gc gate - collector charge (turn-on) CCC 19 28 v ge = 15v t d(on) turn-on delay time CCC 42 CCC t j = 25c t r rise time CCC 26 CCC ns i c = 17a, v cc = 480v t d(off) turn-off delay time CCC 230 350 v ge = 15v, r g = 23 w t f fall time CCC 160 230 energy losses include "tail" and e on turn-on switching loss CCC 0.63 CCC diode reverse recovery. e off turn-off switching loss CCC 1.39 CCC mj see fig. 9, 10, 11, 18 e ts total switching loss CCC 2.02 3.9 t d(on) turn-on delay time CCC 42 CCC t j = 150c, see fig. 9, 10, 11, 18 t r rise time CCC 27 CCC ns i c = 17a, v cc = 480v t d(off) turn-off delay time CCC 310 CCC v ge = 15v, r g = 23 w t f fall time CCC 310 CCC energy losses include "tail" and e ts total switching loss CCC 3.2 CCC mj diode reverse recovery. l e internal emitter inductance CCC 7.5 CCC nh measured 5mm from package c ies input capacitance CCC 1100 CCC v ge = 0v c oes output capacitance CCC 74 CCC pf v cc = 30v see fig. 7 c res reverse transfer capacitance CCC 14 CCC ? = 1.0mhz t rr diode reverse recovery time CCC 42 60 ns t j = 25c see fig. CCC 80 120 t j = 125c 14 i f = 12a i rr diode peak reverse recovery current CCC 3.5 6.0 a t j = 25c see fig. CCC 5.6 10 t j = 125c 15 v r = 200v q rr diode reverse recovery charge CCC 80 180 nc t j = 25c see fig. CCC 220 600 t j = 125c 16 di/dt 200a/s di (rec)m /dt diode peak rate of fall of recovery CCC 180 CCC a/s t j = 25c see fig. during t b CCC 120 CCC t j = 125c 17 parameter min. typ. max. u nits conditions v (br)ces collector-to-emitter breakdown voltage ? 600 CCC CCC v v ge = 0v, i c = 250a d v (br)ces / d t j temperature coeff. of breakdown voltage CCC 0.69 CCC v/c v ge = 0v, i c = 1.0ma v ce(on) collector-to-emitter saturation voltage CCC 1.59 1.8 i c = 17a v ge = 15v CCC 1.99 CCC v i c = 31a see fig. 2, 5 CCC 1.70 CCC i c = 17a, t j = 150c v ge(th) gate threshold voltage 3.0 CCC 6.0 v ce = v ge , i c = 250a d v ge(th) / d t j temperature coeff. of threshold voltage CCC -11 CCC m v/c v ce = v ge , i c = 250a g fe forward transconductance ? 6.1 10 CCC s v ce = 100v, i c = 17a i ces zero gate voltage collector current CCC CCC 250 a v ge = 0v, v ce = 600v CCC CCC 2500 v ge = 0v, v ce = 600v, t j = 150c v fm diode forward voltage drop CCC 1.4 1.7 v i c = 12a see fig. 13 CCC 1.3 1.6 i c = 12a, t j = 150c i ges gate-to-emitter leakage current CCC CCC 100 na v ge = 20v switching characteristics @ t j = 25c (unless otherwise specified) electrical characteristics @ t j = 25c (unless otherwise specified)
IRG4IBC30FD www.irf.com 3 0.1 1 10 100 0 4 8 12 16 f, frequency (khz) load current (a) fig. 1 - typical load current vs. frequency (load current = i rms of fundamental) fig. 2 - typical output characteristics fig. 3 - typical transfer characteristics 1 10 100 1000 1 10 ce c i , collector-to-emitter current (a) v , collector-to-emitter volta g e (v) t = 150c t = 25c j j v = 15v 20s pulse width ge a 1 10 100 1000 5 6 7 8 9 10 11 12 13 c i , collector-to-emitter current (a) ge t = 25c t = 150c j j v , gate-to-emitter volta g e (v) a v = 50v 5s pulse width cc 60% of rated voltage i ideal diodes square wave: for both: duty cycle: 50% t = 125c t = 9 0 c gate drive as specified sink j power dissipation = w 13
IRG4IBC30FD 4 www.irf.com fig. 6 - maximum effective transient thermal impedance, junction-to-case fig. 5 - typical collector-to-emitter voltage vs. junction temperature fig. 4 - maximum collector current vs. case temperature 1.0 1.5 2.0 2.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 ce v , collector-to-emitter voltage (v) v = 15v 80s pulse width ge a t , junction temperature (c) j i = 8.5a i = 17a i = 34a c c c 25 50 75 100 125 150 0 5 10 15 20 25 t , case temperature ( c) maximum dc collector current(a) c 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 10 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response)
IRG4IBC30FD www.irf.com 5 fig. 7 - typical capacitance vs. collector-to-emitter voltage fig. 8 - typical gate charge vs. gate-to-emitter voltage fig. 9 - typical switching losses vs. gate resistance fig. 10 - typical switching losses vs. junction temperature total switchig losses (mj) 0.1 1 10 -60 -40 -20 0 20 40 60 80 100 120 140 160 a t , junction temperature (c) j i = 8.5a i = 17a i = 34a r = 23 w v = 15v v = 480v g ge cc c c c total switchig losses (mj) 1.80 1.90 2.00 2.10 2.20 0 20406080 a r , gate resistance ( w ) g v = 480v v = 15v t = 25c i = 17a cc ge j c 0 400 800 1200 1600 2000 1 10 100 ce c, capacitance (pf) v , collector-to-emitter volta g e (v) a c ies c res c oes v ge = 0v f = 1 mhz cies = cge + cgc + cce shorted cres = cce coes = cce + cgc 0 4 8 12 16 20 0 102030405060 ge v , gate-to-emitter voltage (v) g q , total gate char g e (nc) a v = 400v i = 17a ce c
IRG4IBC30FD 6 www.irf.com fig. 11 - typical switching losses vs. collector-to-emitter current fig. 12 - turn-off soa fig. 13 - maximum forward voltage drop vs. instantaneous forward current total switchig losses (mj) 0.0 2.0 4.0 6.0 8.0 0 10203040 c i , collector-to-emitter current (a) a r = 23 w t = 150c v = 480v v = 15v g j cc ge 1 10 100 0.4 0.8 1.2 1.6 2.0 2.4 fm f instantaneous forward current - i (a) forward volta g e drop - v ( v ) t = 150c t = 125c t = 25c j j j 1 10 100 1000 1 10 100 1000 c ce ge v , collector-to-emitter voltage (v) i , collector-to-emitter current (a) safe operating area v = 20v t = 125c ge j
IRG4IBC30FD www.irf.com 7 fig. 14 - typical reverse recovery vs. di f /dt fig. 15 - typical recovery current vs. di f /dt fig. 16 - typical stored charge vs. di f /dt fig. 17 - typical di (rec)m /dt vs. di f /dt 0 200 400 600 100 1000 f di /dt - ( a/ s ) rr q - (nc) i = 6.0a i = 1 2a i = 24a v = 200v t = 125c t = 25c r j j f f f 10 100 1000 10000 100 1000 f d i /d t - ( a/ s ) di(rec)m/dt - (a/s) i = 12a i = 24a i = 6.0a f f f v = 200v t = 125c t = 25c r j j 0 40 80 120 160 100 1000 f di /dt - ( a/ s ) t - (ns) rr i = 24a i = 1 2a i = 6.0a f f f v = 200v t = 125c t = 25c r j j 1 10 100 100 1000 f di /dt - ( a/ s ) i - (a) ir rm i = 6.0a i = 12a i = 24a f f f v = 200v t = 125c t = 25c r j j
IRG4IBC30FD 8 www.irf.com fig. 18b - test waveforms for circuit of fig. 18a, defining e off , t d(off) , t f vce ie dt t2 t1 5% vce ic ipk vcc 10% ic vce t1 t2 dut voltage and current gate voltage d.u.t. +vg 10% +vg 90% ic tr td(on) diode reverse recovery energy tx eon = erec = t4 t3 vd id dt t4 t3 diode recovery w aveforms ic vpk 10% vcc irr 10% irr vcc trr qrr = trr tx id dt same type device as d.u.t. d.u.t. 430f 80% of vce fig. 18a - test circuit for measurement of i lm , e on , e off(diode) , t rr , q rr , i rr , t d(on) , t r , t d(off) , t f fig. 18c - test waveforms for circuit of fig. 18a, defining e on , t d(on) , t r fig. 18d - test waveforms for circuit of fig. 18a, defining e rec , t rr , q rr , i rr t=5s d(on) t t f t r 90% t d(off) 10% 90% 10% 5% c i c e on e off ts on off e = (e +e ) v v ge
IRG4IBC30FD www.irf.com 9 vg gate signal device under test current d.u.t. voltage in d.u.t. current in d1 t0 t1 t2 d.u.t. v * c 50v l 1000v 6000f 100v figure 19. clamped inductive load test circuit figure 20. pulsed collector current test circuit r l = 480v 4 x i c @25c 0 - 480v figure 18e. macro waveforms for figure 18a's test circuit
IRG4IBC30FD 10 www.irf.com notes: ? repetitive rating: v ge =20v; pulse width limited by maximum junction temperature (figure 20) ? v cc =80%(v ces ), v ge =20v, l=10h, r g = 23 w (figure 19) ? pulse width 80s; duty factor 0.1% . ? pulse width 5.0s, single shot. ? t = 60s, f = 60hz case outline ? to-220 fullpak lead assignments 1 - g a t e 2 - d r a in 3 - s o u r c e notes: 1 dimensioning & tolerancing p e r a n s i y 14.5m , 19 82 2 controlling dimension: inch. d c a b minimum creepage distance betw een a-b-c-d = 4.80 (.189) 3x 2.85 (.112) 2.65 (.104) 2.80 (.110) 2.60 (.102) 4.80 (.189) 4.60 (.181) 7.10 (.280) 6.70 (.263) 3.40 (.133) 3.10 (.123) ? - a - 3.70 (.145) 3.20 (.126) 1.15 (.045) min . 3.30 (.130) 3.10 (.122) - b - 0.90 (.035) 0.70 (.028) 3x 0.25 (.010) m a m b 2.54 (.100) 2x 3x 13.70 (.540) 13.50 (.530) 16.00 (.630) 15.80 (.622) 1 2 3 10.60 (.417) 10.40 (.409) 1.40 (.055) 1.05 (.042) 0.48 (.019) 0.44 (.017) lead assigments 1- gate 2- collector 3- emitter world headquarters: 233 kansas st., el segundo, california 90245, tel: (310) 322 3331 ir great britain: hurst green, oxted, surrey rh8 9bb, uk tel: ++ 44 1883 732020 ir canada: 15 lincoln court, brampton, ontario l6t3z2, tel: (905) 453 2200 ir germany: saalburgstrasse 157, 61350 bad homburg tel: ++ 49 6172 96590 ir italy: via liguria 49, 10071 borgaro, torino tel: ++ 39 11 451 0111 ir far east: k&h bldg., 2f, 30-4 nishi-ikebukuro 3-chome, toshima-ku, tokyo japan 171 tel: 81 3 3983 0086 ir southeast asia: 1 kim seng promenade, great world city west tower, 13-11, singapore 237994 tel: ++ 65 838 4630 ir taiwan: 16 fl. suite d. 207, sec. 2, tun haw south road, taipei, 10673, taiwan tel: 886-2-2377-9936 http://www.irf.com/ data and specifications subject to change without notice. 3/99


▲Up To Search▲   

 
Price & Availability of IRG4IBC30FD

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X